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ABSTRACT: Textural features of the granular structure of stained cell nuclei and nuclear 
sections derived from eo-occurrence and run length matrices are often used for correlation 
with external (clinical) parameters. The representation of cell nuclei and nuclear sections 
vary considerably under changes of preparation and fixation conditions. Most obvious are 
changes in size e.g. by fixation as well as changes in the amount of bound stain. Computer 
simulated variations in size and pixel magnitude of a set of images of cell nuclei stained with 
Feulgen were featured and compared. 
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INTRODUCTION 
In image cyto- and histometry quantitative features of granular structures or textures 

respectively of cell nuclei are measured for correlation with cell and/or tissue properties. An 
often used set of methods is derived from considering textures in images as generated by a 
stochastical process. The estimated parameters of the probability density function of such 
a (2nd order) process are quantitative textural features. Most well-known are the eo-occur-
rence and the run length matrix as estimates of the probability density function, introduced 
by Haralick et al. [4] and Galloway [3]. A recent review with abundant reference list con-
cerning these features can be found in [6]. ' 

Invariance of quantitative features from different influences and distortions in digital 
image analysis is one of the most important property of any analysis and forthcoming inter-
pretation. Well-known influences in cyto- and histometry from specimen preparation and 
staining as well as from the material itself and from the procedures applied result in geomet-
ric and densitometric variations. Often such variations are of diagnostic value and reflect 
specific properties of the material under examination. However feature extraction methods 
might .not react properly to such variations or distortions. 

Feature extraction methods in digital image analysis have reached such a degree of 
complexity [7], that the analysis of the algorithms alone is not sufficient to find out reliable 
answers to the question of feature invariance [2] . In this paper the methods of feature ex-
traction for eo-occurrence and run length features are shortly stated, analyzed and applied 
to a set of digitized images of stained cell nuclei. Each original digital image from a stained 
cell nucleus is altered in terms of size and grey value and analyzed with the whole feature 
set. Alterations are performed by calculation in the digitized image. Feature values are 
plotted against the varied parameters. Classifications as in [5] were not performed. The goal 
was to find out how far experimental influences in a limited range on cell images can pretend 
differences in textural features. The algorithms applied are used in routine cell image an al-
ysis at our laboratory [7]. 
MATERIAL AND METHODS 

In image cyto- and histometry the pixels in digitized images represent mostly a measure 



Fig. 1: Original digitized images of cell nuclei in transmitted light 
of optical density or extinction directly related to the physical amount of material (stain) at 
the location of the pixel. In this case after defming the nuclei of cells as regions of interest, 
the textural measurements are performed. 
a -Image sampling and variation 

From a larger project ten osteoblast cell nuclei (OBJECT=A, .. ,J) were arbitrarily chosen. 
The nuclei were stained according to our standard Feulgen procedure. Feulgen stain is de-
posited only at the DNA inside the cell nucleus, therefore the cytoplasm is transparent and 
mostly invisible. The amount of total stain in one nucleus is directly related to the amount 
of DNA, hence stoichiometric. The nuclei were digitized with an Axiomat microscope (Zeiss, 
Oberkochen, FRG) and a high resolution TV measurement camera (Bosch, Stuttgart, FRG, 
Plumbicon, T1VK9B1). Pixel size was 0.25 ~m, picture size 128 X 128 pixel and the nominal 
resolution of grey values was 256. The selected original nuclei are shown in Fig. 1. Instead 
of extinction the transmitted light was measured, digitized and stored in an image file. 

The DNA content is measured by the total extinction or integrated optical density re-
spectively. Extinction is defined as the logarithm of the ratio of the transmitted outgoing 
light T and the incoming light WW, reduced by a digitizer black shoulder SW: 

1 T-SW 
E = - 150 og Io WW - SW ' 

T outgoing light 
-~..,.........._, _____ cover glass 

stained nucleus 
==:S!S:!:::!i:!::!p:!:::!::25:!::== glass slide 

WW incoming light 
Since the amount and the distribution of DNA is of greatest interest in cyto- and histometry 
alterations of grey values were carried out in extinction. Pixelwise each calculated extinc-
tion value of each digitized image Ph i=A, .. ,J (OBJECT), was multiplied by the factors~= {0.5, 
0.6, 0.7, 0.8, 1.2, 1.4, 1.6, 1.8, 2.0} (FACTOR), recalculated into transmission values and than 
stored in an image file. The calculation was performed as a table calculation of exponential 
law according the formula without taking into account the black shoulder SW: 

E' = -log~ = - {Jlog~ = {3E ~ T' ·= ww<I-{3) rf3. 
Subsequently this set of of 10x10 images Pi,~ were altered by size using an affine trans-

formation with linear interpolation [9] resulting in 10x10x5 images Pi,~,a· The x and y scal-
ing factors were a = {0.5, 0. 7, 1.0, 1.4, 2.0} (SIZE). Some dilated nuclei did not fit into 
128 x 128·pixel image size and were truncated. 
b - Feature extraction 

Each of the cell pictures Pi,~,a were evaluated with a feature extraction procedure. First-
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ly each image is transformed per pixel into normalized extinction according the above men-
tioned formula. Parameters controlling the feature extraction from the eo-occurrence matrix 
are the displacement vector d (DISP), changed according the size factor~ (SIZE), the type of 
normalization (NORM) of the grey values and the matrix size (NOGV). The probability marix 
of eo-occurrences and run length's was calculated using the displacement vector size DISP 
on the grey value reduced normalized extinction image (with NOGV and NORM) in two direc-
tions to smooth out sampling artefacts (fig. 2). The feature numbering sceem follows Haral-

d displacement 
vectors 

Fig. 2: Normalization with histogram equalization (original extinction a) and linear transformation (flat 
texture image b) with NOGV=16, probability matrix from a (c) and displacement vectors used (d) 

ick [ 4] and Galloway [3]. Hence from each image Pi,~ ,a the eo-occurrence features C01-C014 
and NC1-NC14 were calculated for DISP=l, 3, 6, 10, 15; NORM=l (linear), 2 (histogram 
equalization); NOGV= 8, 16, 32, 64. For run length features RL1-RL5 only the normalization 
NORM and matrix size NOGV was varied. Additionally the same algorithms were applied to 
a transformed image called flat texture image which is calculated as the difference of the 
(original) extinction image and the median filtered one. These features are abbreviated to 
NC1-NC14 and NR1-NR5 respectively. 
c - Feature analysis 

All20000 sets ofC01-C014 features and 4000 sets ofRL1-RL5 features from the cell 
images were analyzed and displayed with the statistical analysis system SAS [8]. Most em-
phasis was given to illustrate invariance properties by variation of size and pixel magni-
tude. 
RESULTS 
a - Variation of pixel magnitude (FACTOR) 

For SIZE=l.O, NORM=2, NOGV=16 and DISP=6 features C01-C014 and for SIZE=l.O, 
NORM=2 and NOGV=16 features RL1-RL5 are plotted against the magnitude varying param-
eter FACTOR (fig. 3). In spite of the rigid normalization several features show some depen-
dency from pixel magnitude (FACTOR), see COl, C04, C09 and RL2-RL5. Other apparently 
dependent features have very small ranges. These dependencies can be differentiated fur-
ther on for groups of bright images (OBJECT=A, E, F, H), medium images (B, D, J) and dark 
images ( C, G, I)) (fig. 1). This is especially valid for CO 1, COB, C09 where features from bright 
images decrease or increase more for FACTOR<l.O. 

To illustrate the variation of features under changes of magnitude each feature was 
normalized by division by the corresponding feature calculated from the original image 
(FACTOR=l.O). In Fig. 4 with dotted lines the mean with ±2 s.e.m. bars of the 10 objects for 
NORM=2 is shown. Reference lines for value "1" (=100%) are added. Small variations 
(<±10%) are recognizable for C02, C05-C011, C014, RLl, RL4, RL5 [vertical axis range 
0.86 -1.11). Medium variations (<±50%) appear for C03-C04, C012, RL2, RL3 and large 
variations (about ±lOO%) only for COL 

Finally each feature should define an order relation above the set of images. The invari-
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Fig. 3: All CC-features for SIZE=l.O, NOGV=l6, DISP=6, NORM=2 and all RL-features for NOGV=16, 
DISP=6, NORM=2 above FACTOR 

0 

ance of the latter holds for C02, C03, COS, C07, COB, C010-C013 with some individual 
exceptions. This can easily be recognized by the small number of crossing lines in the corre-
sponding plots (fig. 3). The features of different parameters of SIZE, DISP, NORM and NOGV 
show similar behavior. 
b - Variation of pixel size (SIZE) 

The same procedure as stated in the previous paragraph was ap}>lied to show the influ-
ence of scale changes. For FACTOR=l.O, NORM=2, NOGV=16 and DISP=6 features C01-C014 
and for FACTOR=l.O, NORM=2 and NOGV=16 features RL1-RL5 are plotted against the size va-
rying parameter SIZE (fig. 5). The dependencies are in this case much larger compared to 
the previous ones. Largest influences exist for RLl, RL2, RL4, RL5 and C02, C03. The de-
pendency ofRL-features is expected since run length is directly related to size. The strange 
behavior of C07 and COlO seems to be a result of the image interpolation during scale 
changes interfering with the integer adjustment of displacement vector size (DISP.SIZE). 

To illustrate also the variation of features under changes of size each feature was di-
vided by the corresponding feature calculated from the original image (SIZE=l.O) again. In 
Fig. 6 mean and ±2 s.e.m. bars of the 10 objects are shown. Large variations (±100%) ap-
pear for C03, C07, COlO, C012. Medium variations (<±50%) exist in COl, C02, C04, C05, 
C013 and small variations appear in C06, COB, C09, COll, C014. 

No order relat1onship could be recognized in the set of images in Fig. 5. 
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Fig. 4: Mean and ±2 s.e.m. from all objects for NORM=l (solid), 2 (dotted) for all CO-features for 
SIZE=l.O, NOGV=16, DISP=6 and all RL-features for SIZE=l.O, NOGV=16 normalized by the corre-
sponding feature from FACTOR=l.O plotted above FACTOR 

c - Variation of grey value normalization (NORM) 

Iri Fig. 4 and Fig. 6 all normalized features are plotted above FACTOR and SIZE for 
NORM=l (solid) and NORM=2 (dotted). For orientation reference bars for normal (=1.0) are 
added. The variation of the features for the two methods of grey value normalization are 
similar. For very small ranges of grey values (FACTOR<l.O) the histogram equalization 
(NORM=2) is less efficient. More deviations from "1", the invariance, with larger magnitude 
appear. From Fig. 3 and Fig. 4 a larger dependency ofNORM=2 features from FACTOR than 
for NORM=l features is recognizable. However an order relationship is for CO- and RL-fea-
tures less preserved (without additional Fig.). This is in contrast to the NC-features, see 

' paragraph 0. 
d- Variation of matrix size (NOGV) 

In general the variation of matrix size NOGV do not change the feature behavior. The 
features COl, C05, C06, COB, COll, RLl change their range of values but not their dis-
tribution. The features C02, C04, C07, C09, COlO, C012, C013, RL3-RL5 spread out with 
increasing matrix size. Conversely, the features C03 and RL2 collapse. Features COi2 and 
C013 are sensitive for the size of the region of interest. The outlying OBJECT=C, I, G are the 
smallest nuclei and OBJECT=E is the largest one. For illustration the features COl, C02, 
C03 and C013 are shown in Fig. 7. 
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Fi_g:. 5: All CO-features for FACTOR=l.O, NOGV=16, DISP=6, NORM::2 and all RL-features for FAC-
TQR=l.O, NOGV=16, NORM=2 plotted above SIZE 

e- Variation of displacement vector size (DISP) 
The variation of the size (and/or of the direction for non-isotropic textures) of the dis-

placement vector is usually described as resulting in a variation of sensitivity of CO-fea-
tures for certain textures. In our experiment the number of different textures is quite lim-
ited and by no means distinct as in [5] or in the often used set of example images from [1]. 
However the graphic representation of the features as a function ofDISP show that at least 
CO 1 and C09 do not reflect any different sensitivity (similar behavior for each object, order 
relationship quite stable, nearly no line crossings). All other features show only minor dif-
ferences for DISP<6 and DISP> 10. This is even less pronounced for features calculated with 
NORM=l. Small deviations appear in nearly all CO-features for OBJECT=C, F, G, I. These are 
just the smallest objects. For illustration the features COl, C03, C04 and C09 are shown 
in Fig. 8. 
f- Features derived from flat texture image (NC-features) 

For features derived from a transformed image (flat texture image) no figures are dis-
played. They show comparable development, except for the two different methods of grey 
value normalization (NORM). For the NC-features the linear transformation (NORM=l) is 
more efficient. This is valid in terms of dependency from FACTOR and in preservation of order 
relationships (NC3, NC7, NC9, NC13). The order relationships differ from those defined by 
CO-features. In terms of variation of the displacement vector (DISP) only sizes less or equal 
the window size of the median transformation are adequate. The median window size was 
not altered for different SIZE parameters in this experiment. 
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DISCUSSION AND SUMMARY 
From all varied parameters only some results are displayed. The most surprising prop-

erties are the frequently existing dependencies of features from grey value variations for 
images with low grey values (FACTOR<l.O). We suppose that the process of normalization by 
equalization is not efficient enough for small ranges of grey values. With other words: if 
there is only a small number of different grey values, the equalization will and cannot per-
form properly. This would explain the better performance of linearly normalized NC-fe· 
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tures. As difference of an original image and a median smoothed one the range of grey values 
in the transformed flat texture image is naturally small. 

For size alterations the resulting features are influenced by three additional effects: 1st 
the interpolation during the scale changing algorithm, 2nd (more severely) the cutoff for 
images not fitting into the frame of 128 X 128 pixels for SIZE>l.O and 3rd the calculation of 
the displacement vector. Applying scale changes using minimum or maximum operators 
instead of any interpolation would result in unwished strong edge effects. Only OBJECT=C, 
G, I fit into the given frame under SIZE=2.0. The displacement vector was calculated as 
rounded integer from D ISP.SIZE resulting e. g. forD ISP=6 in 3, 4, 6, 8, 12 pixels for SIZE=O .5, 
0.7, 1.0, 1.4, 2.0 respectively instead of3, 4.2, 6, 8.4, 12. Non-integer displacements are ei-
ther not possible or would necessitate another interpolation with unpredictable results. 

The number ofpixels in the nuclei for original size (SIZE=l.O) range between 1700 and 
4200. This means that numbers of grey values (NOGV) greater or equal32 result in sparsely 
occupied eo-occurrence and run length matrices. However the results do not prohibit large 
matrix sizes. 

Under the assumption of isotropic objects the fixation of the direction of the displace-
ment vector and alteration of its magnitude is justified. The small changes of features under 
varied displacement vector sizes let us suppose that the textures in our example images (and 
usually in ceil nuclei) are not as different as macroscopic textures e.g. used in [5] or from 
[1] . 

Not taken into account were variations of the size of the region of interest. We suppose 
that the number of pixels and hence the number of occurrences affects the features. This will 
be examined in a later experiment. 

At least for larger grey values most of the features examined show satisfying invariance 
from changes in grey value. Also the order relationship is relatively stable for the chosen 
texture examples as far as they can be representative. For size changes the features are 
much more scattered. May be a change of size in continuous space e.g. by optical means is 
more appropriate. The actual set of 500 images is available for further experiments. 

Derived from the results presented here our routine cyto- and histometry feature cal-
culations will be performed with the following parameters: DISP=6, NOGV=16 and NORM=2 
for CO-features and NORM=l for NC-features. 
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